F-3100

Proprietary polymeric fire retardant

Application Data Sheet for Polybutylene terephthalate (PBT)

F-3100, (see properties in Table 1), is a proprietary polymeric flame retardant (FR) offered by ICL-IP which is particularly suitable for use with PBT, with or without fiber reinforcement. **F-3100** exhibits inherent advantages over other halogenated FR additives currently used for the same applications, as a result of its polymeric nature, excellent thermal stability and non-adherence to metal surfaces. In addition, the processability of polymers containing **F-3100** is improved.

Table 1: Properties of F-3100

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromine content, w %</td>
<td>52-54</td>
</tr>
<tr>
<td>Softening range, °C</td>
<td>180-220</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.9</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>15,000</td>
</tr>
</tbody>
</table>

The use of **F-3100** is advantageous when the following properties are required:

- cost/effective flame retardancy
- non-blooming
- good temperature stability and long term heat–aging stability
- easy processability and high melt flow properties for production of parts with thin walls and/or large dimensions with short injection molding cycles and high precision.
- impact properties
- enhancement of reuse of scrap plastic generated during injection molding operations.
- freedom from metal adhesion during lengthy injection molding operation

All information concerning this product and/or suggestions for handling and use contained herein are offered in good faith and are believed to be reliable as of the date of publication. However, no warranty is made as to the accuracy of and/or sufficiency of such information and/or suggestions as to the merchantability or fitness of the product for any particular purpose, or that any suggested use will not infringe any patent. Nothing herein shall be construed as granting or extending any license under any patent. Buyer must determine for itself, by preliminary tests or otherwise, the suitability of this product for its purposes, including mixing this product with other products. The information contained herein supersedes all previously issued bulletins on the subject matter covered.
Thermal stability

Thermo-gravimetric analysis of **F-3100** (Table 2) reflects its high thermal stability allowing high processing temperatures typical for PBT. Its thermal stability combined with excellent resistance to hydrolysis, makes it a product of choice when recycling is an issue.

| Table 2: Thermogravimetric analysis (TGA-10°C/min in air) |
|-----------------------------|-----------------------------|
| Weight loss, % | Temperature, °C |
| 2 | 343 |
| 5 | 352 |
| 10 | 358 |

Processing conditions and Properties

F-3100 functions as a processing-aid enabling lower temperatures to be used and has been shown to be easy to compound with most engineering polymers with or without reinforcement. Thanks to its processing aid effect, there is no need to process compounds containing **F-3100** at high temperature but its thermal stability allows processing temperatures up to a maximum of 310°C. Typical processing conditions to compound and mold PBT flame retarded with **F-3100** are as follows:

Compounding

Compounding in a co-rotating twin-screw extruder (L/D = 32)

Screw speed, RPM: 275

Visit us at http://www.iclfr.com

All information concerning this product and/or suggestions for handling and use contained herein are offered in good faith and are believed to be reliable as of the date of publication. However, no warranty is made as to the accuracy of and/or sufficiency of such information and/or suggestions as to the merchantability or fitness of the product for any particular purpose, or that any suggested use will not infringe any patent. Nothing herein shall be construed as granting or extending any license under any patent. Buyer must determine for itself, by preliminary tests or otherwise, the suitability of this product for its purposes, including mixing this product with other products. The information contained herein supersedes all previously issued bulletins on the subject matter covered.
Injection molding

Temperature profile, °C 250-260-260-275-280
Mold temperature, °C 100 – 120
Pressures, Bar Injection: 1200 - Holding: 800 - Back: 20
Cycle time, sec 30

Properties

Table 3 provides indicative formulations and properties achievable in glass-reinforced PBT.

- **Processing-aid**

 The processing-aid effect of **F-3100** is of particular interest in glass reinforced PBT as it is beneficial at each processing step:

 1. Energy savings during compounding as one can see from the comparative values of specific energy consumptions (SEC) shown in Figure 1.
 2. Lower pressure during injection molding (see Figure 2).
 3. When processed within its softening range, **F-3100** contributes to significant improvement in melt flow properties during injection molding. Enhanced flow is an especially important feature for electronic devices made of glass-reinforced PBT and often designed with thin wall dimensions and intricate shapes.
 4. Freedom from metal adhesion during lengthy injection molding operation.
Fig. 1: Specific Energy Consumption (SEC) in 30% glass reinforced PBT

![SEC Graph]

Fig. 2: Pressure during injection molding (30% glass reinforced PBT)

![Pressure Graph]

All information concerning this product and/or suggestions for handling and use contained herein are offered in good faith and are believed to be reliable as of the date of publication. However, no warranty is made as to the accuracy of and/or sufficiency of such information and/or suggestions as to the merchantability or fitness of the product for any particular purpose, or that any suggested use will not infringe any patent. Nothing herein shall be construed as granting or extending any license under any patent. Buyer must determine for itself, by preliminary tests or otherwise, the suitability of this product for its purposes, including mixing this product with other products. The information contained herein supersedes all previously issued bulletins on the subject matter covered.
FR efficiency

The unique proprietary polymeric structure of **F-3100** provides good flame retardant efficiency and very good thermal stability. In order to get class V-0 with a minimum content of **F-3100**, it is recommended to add small quantities of polytetrafluoroethylene (PTFE) to eliminate the risk of dripping. PTFE is preferably added in the compound via a master-batch concentrate to ensure a homogeneous blend.

High melt flow during injection molding

The softening range of **F-3100**, between 180°C and 220°C, is lower than that of PBT, leading to good mixing of the melt. Use of **F-3100** enhances flow during injection molding. The comparative values of MFI of various flame retarded PBTs shown in Figure 3 explains in part the positive effect **F-3100** has in cutting cycle times and reducing wall thickness of produced articles.

![Fig. 3: Melt Flow Properties in FR PBT with 30% glass reinforcement (UL 94 V-0; 0.8mm)](image)

F-3100
High MW BE
Br PC
Modified Br PC
Neat

*High MW BE = high molecular weight brominated epoxy polymer
Br PC = brominated polycarbonate
Modified Br PC = tribromophenol end-capped brominated polycarbonate*
Impact properties

F-3100 contributes to an improvement of impact properties in PBT when compared with other commonly used FRs. Fairly high izod notched impact values are achievable with glass reinforced PBT as can be seen in Table 3.

Thermal aging stability

Thermal aging properties of flame retarded PBT play an important role in simulating long term behavior of finished parts with high working temperatures.

In this respect, *F-3100* exhibits good performance as a result of its polymeric nature and excellent thermal stability. After a 1000h thermal aging treatment at 180° C of glass reinforced PBT flame retarded by *F-3100*, tensile properties are maintained above 50% of their initial value (Figure 4).

Recycling

Simulation studies of recycling of PBT compound based on *F-3100* compared to a commercial high MW Br-epoxy have been made. Examination of MFI stability in a flow indexer as a function of time, demonstrates the beneficial phenomenon of increase in MFI, whereas in high MW Br-epoxy there is a definite tendency of MFI decrease, probably indicating some molecular cleavage (Figure 5).
Table 3: Properties of glass reinforced PBT flame retarded by F-3100.

<table>
<thead>
<tr>
<th>FR Type</th>
<th>F-3100</th>
<th>High MW BE*</th>
<th>Modified Br PC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition, weight %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBT</td>
<td>50.1</td>
<td>50.1</td>
<td>51.6</td>
</tr>
<tr>
<td>Glass fiber</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Flame retardant</td>
<td>14.4</td>
<td>14.4</td>
<td>12.9</td>
</tr>
<tr>
<td>Antimony trioxide</td>
<td>5.4</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>PTFE (antidripping agent)</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Bromine content %</td>
<td>7.6</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flame retardancy:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL 94 class (0.8mm)</td>
<td>V-0</td>
<td>V-0</td>
<td>V-0</td>
</tr>
<tr>
<td>Glow wire test, 960°C</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>MFI (250°C-2.16Kg), g/10min</td>
<td>66</td>
<td>56</td>
<td>38</td>
</tr>
<tr>
<td>Tensile:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum strength, MPa</td>
<td>118</td>
<td>112</td>
<td>121</td>
</tr>
<tr>
<td>Elongation at break, %</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Modulus, MPa</td>
<td>11,000</td>
<td>9,800</td>
<td>10,400</td>
</tr>
<tr>
<td>IZOD notched impact, J/m</td>
<td>88</td>
<td>83</td>
<td>76</td>
</tr>
<tr>
<td>HDT (1820 kPa), °C</td>
<td>204</td>
<td>202</td>
<td>203</td>
</tr>
</tbody>
</table>

* High MW BE = high molecular weight brominated epoxy polymer
Modified Br PC = tribromophenol end-capped brominated polycarbonate

Visit us at http://www.iclfr.com

All information concerning this product and/or suggestions for handling and use contained herein are offered in good faith and are believed to be reliable as of the date of publication. However, no warranty is made as to the accuracy of and/or sufficiency of such information and/or suggestions as to the merchantability or fitness of the product for any particular purpose, or that any suggested use will not infringe any patent. Nothing herein shall be construed as granting or extending any license under any patent. Buyer must determine for itself, by preliminary tests or otherwise, the suitability of this product for its purposes, including mixing this product with other products. The information contained herein supersedes all previously issued bulletins on the subject matter covered.
Figure 4: Thermal aging F-3100 in GFR PBT
(180°C - 1000h)

Figure 5: MFI thermal stability 30% GFR PBT

Visit us at http://www.iclfr.com

All information concerning this product and/or suggestions for handling and use contained herein are offered in good faith and are believed to be reliable as of the date of publication. However, no warranty is made as to the accuracy of and/or sufficiency of such information and/or suggestions as to the merchantability or fitness of the product for any particular purpose, or that any suggested use will not infringe any patent. Nothing herein shall be construed as granting or extending any license under any patent. Buyer must determine for itself, by preliminary tests or otherwise, the suitability of this product for its purposes, including mixing this product with other products. The information contained herein supersedes all previously issued bulletins on the subject matter covered.
Health – Safety - Environmental aspects

The proprietary polymeric structure of **F-3100** is designed and developed to be safe and environmentally friendly in usage and in end of life products, including recycling or waste incineration. **F-3100** is not expected to pose any risk to health and the environment. As part of an ongoing Product Stewardship Program and Customer oriented policy, ICL-IP is committed to implement further toxicological and environmental tests if needed.

Applications

As a result of its outstanding combination of properties, **F-3100** is recommended for the production of PBT electro-mechanical/electronic parts, automotive and other precision parts. Typical examples of application are shown in Figures 7 to 11:

- Connectors in the computer, telecom and automotive industries, high quality keyboards, mini-fans inside computers.

In these applications, **F-3100** exhibits its inherent advantages over other products, with its processing aid effect for thin injection molding, good thermal stability, good impact and good electrical properties and excellent dimensional stability even for large dimension parts.

It is often preferred over other flame-retardants if non-blooming properties are needed.

Visit us at http://www.iclfr.com

All information concerning this product and/or suggestions for handling and use contained herein are offered in good faith and are believed to be reliable as of the date of publication. However, no warranty is made as to the accuracy of and/or sufficiency of such information and/or suggestions as to the merchantability or fitness of the product for any particular purpose, or that any suggested use will not infringe any patent. Nothing herein shall be construed as granting or extending any license under any patent. Buyer must determine for itself, by preliminary tests or otherwise, the suitability of this product for its purposes, including mixing this product with other products. The information contained herein supersedes all previously issued bulletins on the subject matter covered.
All information concerning this product and/or suggestions for handling and use contained herein are offered in good faith and are believed to be reliable as of the date of publication. However, no warranty is made as to the accuracy of and/or sufficiency of such information and/or suggestions as to the merchantability or fitness of the product for any particular purpose, or that any suggested use will not infringe any patent. Nothing herein shall be construed as granting or extending any license under any patent. Buyer must determine for itself, by preliminary tests or otherwise, the suitability of this product for its purposes, including mixing this product with other products. The information contained herein supersedes all previously issued bulletins on the subject matter covered.
For further advice and assistance, contact our representatives in your area:

Head Office

ICL-IP Ltd.
Phone: +972 8 6297 608
Fax: +972 8 6297 846
E-mail: frinfo@icl-ip.com

North America and Mexico
ICL-IP America Inc.
Phone: +1 877 661 4272
Fax: +1 314 983 7610
E-mail: fr.nam@icl-ip.com

South America
ICL Brasil Ltda
Phone: +55 11 2155 4539
Fax: +55 11 2155 4507
E-mail: fr.sam@icl-ip.com

Europe
Main Office
ICL-IP Europe B. V.
Phone: +31 20 800 5800
Fax: +31 20 800 5805
E-mail: fr.europe@icl-ip.com

Italy
PM Chemicals Italy
Phone: +39 02 204 87225
Fax: +39 02 204 9449
E-mail: fr.it@icl-ip.com

Asia Pacific

China
ICL China
Phone: +86 21 5386 3322
Fax: +86 21 5386 3336
E-mail: fr.china@icl-ip.com

Japan
ICL-IP Japan Ltd
Phone: +81 3 6801 8430
Fax: +81 3 6801 6970
E-mail: fr.japan@icl-ip.com

Asia Pacific
ICL Asia Ltd
Phone: +852 28277761
Fax: +852 2824 1502
E-mail: fr.asia@icl-ip.com

Other Parts of the World
ICL-IP Sales Office
Phone: +972 8 6297 633
Fax: +972 8 6297 819
E-mail: fr.row@icl-ip.com

Visit us at http://www.iclfr.com

All information concerning this product and/or suggestions for handling and use contained herein are offered in good faith and are believed to be reliable as of the date of publication. However, no warranty is made as to the accuracy of and/or sufficiency of such information and/or suggestions as to the merchantability or fitness of the product for any particular purpose, or that any suggested use will not infringe any patent. Nothing herein shall be construed as granting or extending any license under any patent. Buyer must determine for itself, by preliminary tests or otherwise, the suitability of this product for its purposes, including mixing this product with other products. The information contained herein supersedes all previously issued bulletins on the subject matter covered.